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SUMMARY

2 study of the effect of the frequency of the lowest
wing structural mode on the airplane center-of-gravity
dynamic-response factor was made by employing
simplified transfer functions. It was found that the
simplified transfer function adequately predicted the
mazrimum value of the incremental normal-load-
Jactor response at the airplane center of gravity to
1sosceles triangle pulse elevator inputs.

The results of the study are presented in the form of
preliminary design charts which give a comparison
between the dynamic-response factors of the semi-
rigid case and the airplane longitudinal short-period
case and between the dynamic-response factors of the
semirigid case and the steady-state value of the air-
plane longitudinal short-period response.  These
charts can be used to estimate the first-order effects of
the addition of a wing-bending degree of freedom on
the short-period dynamic-response factor and on the
maximum dynamic-response factor when compared
with the steady-state response of the system. The re-
sults show that a structurally damped frequency
greater than six times the short-period damped fre-
quency will not affect the dynamic-response factor of
the semirigid short-period response at the airplane
center of gravity and that, when the frequencies are
equal, the semirigid dynamic-response factor may be
as much as 1.6 times that of the short period. The
results also show that the maximum dynamic-response
Sactor can be as much as 2. times the steady-state re-
sponse of the system, depending wpon the ratio of the
natwral frequencies of the structural and short-period
modes and upon the damping of the two modes.

INTRODUCTION

As airplanes have increased in size, speed, and

flexibility, analysis of the loads, stresses, and de-
flections associated with the longitudinal short-
period mode has become inereasingly more com-
plex. This complexity results from the need to in-
clude not only the acroelastic effects associated
with structural deformation but also the dynamic
effeets of structural vibration.  Considerable effort
is currently being expended in the field of dynamie
analysis and it has become customary to express
the dynamie cffects of both acroelasticity and
structural vibration in terms of a dynamic-response
factor which relates the dynamie response of the
alrplane to its steady-state response.  The effects
of flexibility are generally associated with a specifie
response al the center of gravity of the airplane,
especinlly in the preliminary design stages; how-
ever, these effects at other points on the airframe
(such as a wing-tip deflection or a strain in a partic-
ular structural member) are often of interest.
The present-day use of thin high-aspect-ratio
wings on large high-speed airplanes has resulted in
a lowering of the frequency of the wing structural
vibratory modes. As a consequence of this re-
duction in stiffness, the frequency of the lowest
wing vibratory mode is approaching the frequency
of the airplane short-period mode.  The proximity
of the frequencies of these two modes has a pro-
nounced effect on the airplane dynamic-response
factor. Although this effect has been known quali-
tatively for some time and studies of specific con-
figurations have been made, there has been no
stmple numerical guide for estimating the effects
of this design trend. Possibly, thislack is a natural
consequence of the nature of the mathematical
{ransfer functions which relate the airplane center-
of-gravity response to an incremental change in

1 Supersedes NACA Technical Note 4250 by Carl R. TTuss and Jumes J. Donegan, 1958,
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clevator angle. These transfer functions are of a
type which is usually regarded as being more
adaptable to specific studies than to generalization.

The purpose of this study was to determine
whether the results obtained by using the complete
transfer functions could also be obtained to a high
degree of approximation with related but greatly
simplified transfer functions and whether this sim-
plification was of such a nature as to permit
generalization of the results.  The present paper
illustrates the nature and validity of the simplifi-
cation of the transfer function used and assesses as
to both magnitude and trends the effect of the
proximity of the frequencies of the lowest wing
structural mode and the airplane short-period
mode on the airplane incremental normal load
factor at the airplane center of gravity. The
results are summarized in the form of design charts
which, it is believed, will be of value in the pre-
liminary design stages of an airplane.

SYMBOLS

R generalized nondimensional mass-
coupling term between Z and &
degrees of freedom, ay,,/pSe

Ao generalized mnondimensional mass
term of flexible-wing mode be-
tween elastic wing and & degree
of freedom, ay;/pSt

Aoy generalized nondimensional mass-
coupling term between 8 and 7
degrees of freedom, ag,/pSe?

Azn generalized mass-coupling term be-
tween Z and k degrees of freedom,

00/2
2 [ A= efo )
0
slugs
T oencralized mass term of flexible-
wing mode between elastic wing
and & degree of freedom,

2 [ gy
—28”1,;f;(y)f¢ (!/) + I’zr[fo(3/>]2}(].lllﬂl
slugs

gy generalized mass-coupling term be-
{ween 8 and & degrees of freedom,

2 f PSS T ofo)

[}
- 7n,u]f.~: (.’/) _'}"S,u‘[./'bﬁl‘)](].’/w
slug-ft

b wing span along clastic axis, {t

C, 1, . . . (y dimensional transfer-function
cocflicients  for semirigid
case

"y, 75, . . . ('3 nondimensional transfer-

function coefficients  for
semirigid case

(r {foree coefficient due {o elastic-wing
deflection, F,/¢S
Cy airplane  pitching-moment  coefli-
cient about the center of gravity,
M [qS¢
. airplane normal-foree coefficient at
the airplane center of gravity,
FylqS
¢ wing mean acrodynamic chord, ft
b
drs
¢
Fx kinetic energy, ft-1b
K, polential energy, [t-1h
r foree, 1b
Iy airplane normal force at center of

gravity, positive downward, 1b

f.Gp spanwise bending-mode shape along

wing clastic axis

Jo(w) spanwise (wisting-mode shape about
wing elastic axis per unit tip
bending deflection, radians/ft

g acceleration due to gravity, ft/sec?
i wing-tip defleetion, kfe, chords
A wing-tip deflection of elastic axis

due to bending, positive down-
ward, {t

I section moment of inertia, m’ 2%
slug-ft3/ft

Ky, K, K, dimensional rigid transfer-function

K. KK, } coeflicients

K’ K., K’;, \ nondimensional rigid transfer-func-

KR, tion coeflicients

Ky radius of gvration about Y-axis,
chords

reduced angular {frequency, we/ 17

l longitudinal distance from airplane
center of gravity to wing clastic
axis (function of spanwise loca-
tion), positive forward, ft

M pitching moment aboutl center of
gravity, ft-Ib

My, My My mass, slugs

m’ ., section mass, slugs/M
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incremental normal load factor at
airplane center of gravity (posi-
tive upward), g units

dynamic pressure, Ib/sq [1; also,
pitching angular veloeity, radi-
ans/sec

wing plan-form area, sq ft

section mass moment about clastic
axis, m’,x, slug-fi/ft

Laplace transform variablo

. . . 27
period of oseillation, =—, sec
w

duration of triangular input, sec
time, sec
velocity, fps
longitudinal displacement, positive
forward, ft
Iateral or spanwise displacement, ft
vertical displacement of airplane
center of gravity, positive down-
ward, ft
vertical wing deflection of elastic
axis due to wing bending, posi-
tive downward, ft
angle of attack positive when wing
leading edge is up, radians
I'; dimensional quasi-steady trans-
fer-funetion coefficients
I; nondimensional quasi-steady
transfer-function coeflicients
dynamic-response factor at air-
plane center of gravity,
(A'"dlln)max/Ansmtic
ineremental elevator deflection, pos-
itive when trailing edge is up, deg
angle of piteh about airplane center
of gravity, positive nose up,
radians
sweep angle of elastic wing, deg
nondimensional airplane mass,
ma/pSc
damping parameter, pereent of eriti-
cal damping
mass density of air, slugs/cu ft
angle of twist of airfoil in plane
perpendicular to elastic axis, posi-
tive when wing leading edge is
up, radians
angular frequency, radians/sce

airplanc

d damped

dyn dynamic

f fuselage; structural

I flexible-wing degree of freedom
mar maximum

n natural

0 exposed wing

sp short period

sr semirigid

w wing

4 vertical degree of freedom
g pitching degree of freedom

Dots are used to indicate differentiation with
Tespect to time; for example, §=d6/dt. The sub-
scripts e, 8, ki, b, ¢, T, and 8 indicate differentiation
with Ttespect to the subscripts; for example,

Oy, =dCxfda.

GENERAL CONSIDERATIONS

Tn the preliminary design stage of an airplane,
the designer can, with presently available meth-
ods, estimate the longitudinal short-period dy-
namic-response characteristics of the center of
gravity of a given configuration for rigid and
quasi-steady airframes. The rigid airframe is de-
fined in this paper as a structure that does not
deform or vibrate, the quasi-steady airframe as
one which can deform but not vibrate, and the
semirigid airframe as one which can both deform
and vibrate. The problem that the designer is
faced with in this preliminary design stage is the
effect of the airframe vibratory modes (particu-
larly those of the wing since it is usually the most
flexible) on the quasi-steady airframe longitudinal
short-period dynamic response. The methods
available for calculating these effects are usually
rather complex or require information which would
probably not be readily available at this stage of
the design.  The designer needs, therefore, some
means of estimating these effects which are simple
and arc based on parameters which would be
available.

In this paper such mecans are presented in the
form of preliminary design charts which can be
used to estimate the effeets of the proximity of
the frequencies of the lowest wing structural mode
and the airplane short-period mode (quasi-steady
case) on the dynamic response at the center of
gravity of the semirigid airplane. The design
charts are based on the philosophy that in the



4 TECHNICAL REPORT R—12—NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

preliminary design stage of a particular configura-
tion the designer will be able to compute either
the maximum incremental normal load factor for
the quasi-steady case or the steady-state value of
the incremental normal load factor of the quasi-
steady case. The charts are restricted to estimat-
ing the effects of only the lowest vibratory wing
bending mode on the incremental normal-load-
factor response at the center of gravity to clevator
control inputs. All other structural parts are con-
sidered rigid. The charts are further restricted to
a comparison of dynamic-response factors which
are defined as

Y= (A"dzm) /’A”xtalic (1)

mar

where (Any,,)mes 18 the maximum amplitude of the
first. peak of the time history of the ineremental
normal load factor at the center of gravity and
AN 15 the steady-state amplitude of the time
history of incremental normal load factor.

METHOD OF ANALYSIS

The procedure followed in this paper for study-
ing the effect of the proximity of the frequencies
of the lowest struetural wing mode and the short-
period mode on the incremental normal-load
dynamic-response factor at the airplane center of
gravity was patterned after that of references 1
and 2. Dynamic systems representing the inere-
mental normal-load-factor response at the center
of gravity to an elevator input and defined mathe-
matically by transfer functions were exeited by
various isosceles triangular inputs and the maxi-
mum values of the resulting time responses were
expressed as ratios to the steady-state response
factors. This procedure was followed for systems
having the quasi-steady mode coupled with a
structural mode (semirigid case) and for the quasi-
steady mode alone for a wide range of configura-
tions and frequencies and dampings of the two
modes. The dynamic-response factors thus ob-
tained for the system with two modes were then
expressed as ratios 1o those obtained for the sys-
tem with one mode to determine the effects in
question.

Although triangular inputs were used in this
study, it is believed that comparable results would
be obtained for other shapes of pulse-tvpe inputs
since the process of expressing the semirigid results
as ratios to the short-period results tend to elimi-

nate the effects of different-shaped inputs. Tsos-
celes triangle inputs were used in this paper for
the following reasons: they approximate in shape
severe pilot-imposed inputs; their frequeney con-
tent could be casily waried by changing their
duration T;; their frequency content could be
made sufficient o excite the wing structural mode;
and they could be easily handled mathematically
both by manual calculation and by automatic elee-
tronic calculation.

For existing airplanes with high-aspect-ratio,
thin, flexible wings, the lowest structural fre-
quency is usually associated with wing bending
and, therefore, wing bending was selected as the
lowest structural mode for this investigation. The
theoretical system chosen for this study consisted
of three degrees of freedom: freedom in pitch,
vertical translation, and wing bending.  The equa-
tions of motion developed by Lagrange’s method
describing this system have been previously estab-
lished and are presented in reference 3. For con-
venience they are also restated in appendix A of
this paper.

The assumptions made in this study included
the following: linearity, no change in airplane for-
ward velocity, small perturbations, and rigidity of
the fuselage and tail assemblics. These assump-
tions may be summarized by the assumption that
the motions of an aircraft with flexible wings arc
deseribed by the equations given in appendix A.
Tt was further assumed that the aireraft is stati-

ally and dynamically stable longitudinally, that
is, that the aircraft short-period mode and struc-
tural mode are oscillatory and are damped.

As mentioned earlier in this section, the dynamic
systems used in this paper were defined mathe-
matically by transfer functions relating the incre-
mental normal load factor at the center of gravity
to an incremental elevator input. Some of the
terms in the transfer functions could be eliminated
with small loss in accuracy and the analysis was
made by using these simplified transfer functions.
In order to show this relationship, it is first
necessary to define the complete transfer functions
and then demonsirate the simplifications that
can be made to obtain the simplified but practical
transfer functions. Hereafter in this paper the
word “complete” will refer to transfer functions
containing all the terms and the word “simplified”
will refer to the transfer funetion with some of its
terms omitted.
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COMPLETE TRANSFER FUNCTIONS

The complete transfer functions relating the
incremental normal load factor at the center of
gravity to the incremental elevator angle input
for the semirigid case, the quasi-steady case, and
the rigid case were obtained from the equations
of motion given in appendix A.

Semirigid case..—The transfer function for the
semirigid case which defines a system that has
both wing quasi-steady deformation and wing
vibration is, in nondimensional form,

(74 O 4 ot s+ (7

An |
3. T W e g O,

where the definitions of the € coeflicients are
given in appendix B. In dimensional form the
transfer function may be written as

An (5)= O+ O+ ﬂ?*‘i{“ (Vs'\' +C,
Aﬁe aa 84+ (v]v\'z’{* 0282+ C3v9+ P4

3)

where the conversion factors of €7 to 7 are given
in appendix C. The static value of this transfer
function is seen to be Cy/(%. The characteristic
equation may be factored into two quadratic
equations by Graefle’s method and written as

An O+ Cos®+ Crs?+ g+ 0
—‘[82 +28p(wa) s (wn)sp"] (8428, (wn) 5 - (‘%)!2]
4)

Quasi-steady case.—As indicated in reference 4
by letting rates of wing-tip deflection 7°%h=Dh=0
in the equations for the semirigid case, the transfer
function for the quasi-steady case may be formed.
Tn this case the wings can deform bul do not
vibrate. The transfer function for the quasi-
steady ease may be writien as

An (Q)_&S'2+ Tw+ Ty
Aée S 82+F18—*‘r2

where the T cocfficients are defined in appendixes
B and C. The static value of this function is
seen to be T3/T,. Tt is interesting to note that
the static value of the semirigid case is equal
to the static value of the quasi-steady case
OO =T4/T,, since ToI'y=Co(y and Tl s=C4(7,.

Rigid case. —By letting D*h=Dh=h=0 in the
equation for the semirigid ecase, the transfer
function for the rigid case may be formed and
written as

An Kos?+4 Kgn - IC;
Aé, (8)= 24 Kis+ K, (©6)
where the K coefficients are defined in appendixes
B and C. Although the transfer functions of the
rigid case and the quasi-steady case have the
same form, the transfer coefficients of the two
cases differ in that the transfer cocfficients of the
rigid case are modified by the effects of wing
deformation to give the quasi-steady-case transfer
cocficients. The static value of this function
is K/K,.

SIMPLIFIED TRANSFER FUNCTIONS

In order to determine whether the number of
terms in the complete transfer functions could be
reduced, studies of 15 airplane configurations
were made on an electronic analog computer by
using the complete transfer functions for the
semirigid case (eq. (4)) and the quasi-steady
case (eq. (5)). The configurations used covered
a range of wing sweep angles from 0° to 60°, of
ratios of wing mass to airplane mass from 0.15
to 0.50, of airplanc center-of-gravity positions
from 0.25¢ to 0.45¢, and of dynamic pressures
from 100 to 800 pounds per square foot. These
studies indicated that some of the terms in the
numerator of the transfer functions did not con-
tribute appreciably to the maximum value of the
time history of incremental normal load factor
for triangular inputs but merely acted as phase
shifters and thus were not required for the pur-
poses of the present study. Typiecal results of
these studies are shown for the semirigid ease in
figures 1 and 2 and for the quasi-steady casc in
figures 3 and 4.

Semirigid case.—The contribution of the nu-
merator terms of the semirigid transfer function
with each numerator coefficient equal to unity is
shown in figure 1(a). In figure 1(b) the con-
tribution of each of these same numerator terms
is shown for typical values of the cocfficients.
From plots such as these it is seen that the (g term
makes the most important contribution to the
maximum value of the incremental normal load
factor.

Calculations of incremental normal-load-factor
time response to isosceles triangle inputs were
then made by using only the (5 term in the
semirigid transfer function. These time histories
were compared with time histories’ obtained from
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(a) Contribution of numerator terms with coeflicients
equal to unity.

(b) Contribution of numerator terms for typical values of

the coefficients: (=>563.25; C3=50.376; (C7;=0.604;
Ce= - 0.504; and C5=- 0.0394.
Fravre 1. Contribution of individual numerator terms

of the semirigid transfer function

an o Cort+ Cost+ Crs? 4 Casd Gy
28, T T T O L Ot Cos+ G

to the complcete response to a unit-amplitude isosceles
triangle input with T;=1.0, C,=15.4414, (,=116.8380,
C;=1350.6639, and C;=>554.5269.

the complete transfer function (eq. (4)), to de-
termine how well the simplified transfer function
(Cy term only in the numerator) desecribed the
maximum value of the time response of inecre-
mental normal load factor for triangular inputs.
Typical comparisons are shown in figure 2(a) for
the ease when the frequencies of the modes are
different and in ficure 2(b) for the case when
the frequencies of the modes are equal.

On the basis of such computations it was
determined that the complete semirigid transfer
function (eq. (4)) could be reduced to
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Frcure 2, - -Comparison of the response to a unit-ampli-
tude isosceles triangle input with Ti==1.0 obtained from

using the simplified semirigid transfer funetion

f‘ﬂ( )= Cy
25, T HFC S+ C+ Cas+Cy

and the complete semirigid transfer funetion

An o _Cott Col L G 4 Cos } Gy
Ad, s + C183 “i' Cgb’"’ + (‘;;S+ C'q

G
[82+ 25517 (wn)s ll'? + (wn)s Il2] ['5‘2 + 25/({'0")/'8 ‘{V (w")/z]
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An
A

and still adequately deseribe the maximum value
of the time history of incremental normal load
factor for {riangular inputs. The use of the
word ‘“adequately” in this paper means generally
to within ahout 3 percent and rarely more than
about 10 to 15 percent.

Quasi-gteady case.—A similar procedure was
used to determine the contribution of the terms in
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the numerator of the quasi-steady transfer fune-
tion (eq. (5)) to the maximum value of the time
response of the ineremental normal load factor.
In figure 3(a) the contribution of the numerator
terms of the quasi-steady transfer function with
each numerator cocfficient equal to unity is
shown. TIn figure 3(b) the contribution of cach
of these same numerator terms is shown for
typical values of the coefficients.  Tn this ecase it
is scen that T i1s the important term.  Typical
comparison of a time history obtained from the
reduced transfer funetion (T term only in the
numerator) with that obtained from the complete
transfer function (eq. (5)) is shown in figure 4.
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(1) Contribution of numerator terms with coefficients
cqual to unity.

(h) Contribution of numerator terms for typical values
of the coefficients: T,=7.003;, Tp=0.054; and
;= —0.0355.

Frovre 3.—Contribution of individual numerator terms
of the quasi-steady transfer function
EUPRNIRLT RS RS

A8, SEs+ T,

to the eomplete respense {o & unit-amplitude isoseeles
triangle input with 7;—1.0, T';=3.4328, and I,=6.903.L
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From comparisons such as that shown in figure
4, it was determined that the complete quasi-
steady transfer function {eq. (5)) could be re-
duced to
T

ST v+ Ty ®

o=
Ad,
and still adequately deseribe the maximum value
of the time history of ineremental normal load
factor for triangular inputs.

Semirigid short-period case. --Since the denomi-
nator of equation (8) does not cqual the short-
period part of the denominator of equation (7),
it was found convenient to define another transfer
function. This transfer function will be called
the semirigid short-period case and is defined as

1

An o,
SZ+QEsp(wn)spS’*_ (wn)spz

A8,

() )

where the denominator of equation (9) is identical
to the short-period part of the denominator of

=9,
@)/

The use of this semirigid short-period transfer
function as a basis of comparison rather than the
quasi-steady case reduced the computations to
practical proportions. If the quasi-steady ecase
had been used, it would have been necessary to
estimate a new set of derivatives which make up

equation (7) and the constant A is equal to

S
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I'reure 4.—Comparison of the response to a unit-ampli-
tude isosceles triangle input with 7:=1.0 obtained from
usging the simplified quasi-steady transfer function
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and the complete quasi-steady transfer funetion
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the transfer-function coeflicients for each new
configuration and flight condition. However, by
defining the semirigid short period, it was ncces-
sary to choose only the damping and frequency
of the two modes without regard to the derivatives
which determine these parameters.

Actually, ihe semirigid short-period case is
practically cqual to the quasi-steady case sinee the
damping and frequency of the two cases are almost
the same for a wide range of configurations and
q values, (Sece figs. 5 and 6.) A comparison
of the natural frequencies of the semirigid short-
period case with those of the quasi-steady case for
a wide range of configurations and ¢ values is
shown in figure 5. A similar comparison of the
damping of the semirigid short-period case with

6
A=0
My /my =015
4 — &
el //f/ _

—o— Semirigid short period
—-0 - Quasi steady

)
8 0L /%_ A=0
L4 - my/ma = 0.33
5 e =
o o
22 : r//
5| ,
>
€0
T : e A=0
£ ] o M/ My = 0.50
° 2 /‘
5
"6 - -
=z
) ) : . A=40
__:‘/k;/———‘b—-———ﬁ—-—'“ "’7uly/”7,411 N O~|33
A=60
2l =TT m,/my = 0.33
o) 200 400 600 800 1000

Dynamic pressure, g, lb/sq ft

Froure 5.-- Comparison of the natural frequeney of the
semirigid short-period mode with that of the quasi-
steady mode at @ center-of-gravity location of 0.25¢.

.8
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- 1 mymy =0.15
e e
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| | —o—Quasi steady
0
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ab o2 bt | T 70
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§ aF - IH_gé:ﬁiﬁ w,,,W/ A
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L e .ﬁ/xzf,’j’jl,a A=40
L /M4 = 0.33
4 - o
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| & mw/mA =0.33
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Ficure 6.—-Comparison of eritical damping of the semi-
rigid short-period mode with that of the quasi-steady
mode at a center-of-gravity location of 0.25¢.

that of the quasi-steady case is shown in figure 6.
The points shown in figures 5 and 6 were computed
from the data of reference 3. The data of figure 6
indicate that at the higher values of dynamic
pressure the damping of the short-period case is
greater than that of the quasi-steady case.  There-
fore the maximum value of the response as well
as the maximum dynamiec-response factor obtained
from the short-period case would always be less
than that of the quasi-steady case. Thus the
ratios of maximum dynamic-response factors ob-
tained by comparing the semirigid case with the
short-period case would always be greater than
(on the conservative side) or the same as those
obtained by comparing the semirigid case with
the quasi-steady case.

Rigid case. The complete rigid transfer fune-
tion (eq. (6)) could also be reduced to
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in order to define the maximum value of the time
history of incremental normal load factor for tri-
angular inputs,

TYPICAL CALCULATIONS ILLUSTRATING METHOD

The method used in this study and the prepara-
tion of the desired preliminary design charts in-
volved a large number of calculations and plots,
typical samples of which are shown in figures 7
and 8.

In order to obtain the maximum possible dy-
namic-response factor for the range of the vari-
ables, it was first necessary to calculate the time
response to triangular inputs of varying duration
(different frequency content) for cach system (a

particular combination of the variables), A
der
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sample of these caleulations is shown in figure 7
for both the semirigid short-period and the semi-
rigid cases. Some of these computations were
carried out on automatic electronic computing
cquipment, some on desk-lype computers, and
some were carried out by using the tables of refer-
ences 5 and 6 in conjunction with automatic
clectronic computing equipment. The dynamie-
response factor defined previously as equation (1)
was determined for cach case by picking the value
of the first peak of the time histories (see, for
example, fig. 7 for 7,=—0.4) and dividing it by the
static value for the particular system being con-
sidered.  These results were then plotted against
the period ratio 7,/T,, (ratio of the time base of
the input to the natural period of the short-period
mode) in order to determine the maximum dy-
namic-response factor for cach case. A typieal

plot of this procedure is shown in figure 8. The
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Freuvre 7.—Typical center-of-gravity incremental normal-load-factor time responses of the semirigid short-period and

semirigid eases with a frequency ratio {(wa)yf{wn),, of 1.9 to isosceles triangle inputs.

(wn) ;=6.0; §,20.02.

(wn),,=3.162; £,_=0.38;
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data of figure 8 are for the same cases as those of
figure 7, the four points shown in figure 8 having
been computed from the results shown in figure 7.

From plots such as that shown in figure §, it
was possible to ascertain the magnitude and trends
of the effects of the proximity of the frequencies
of the lowest structural mode and the airplane
Jlongitudinal short-period mode on the ineremental
normaldoad dynamic-response factor at the air-
plane center of gravity. The plotting of these
caleulations resulted in the desired preliminary
design charts.

RANGE OF VARIABLES

The results of this study are believed to be valid
over a range of variables as follows: dynamic
pressure from 100 to 800 pounds per square foot,
wing sweep angles from 0° to 60°, ratios of wing
mass to airplane mass of 0.15 to 0.50; center-of-
gravity location from 0.25 to 0.45 mean acro-
dynamic chord, ratios of damped wing lowest
structural frequency to damped airplane longi-
tudinal short-period frequency from 1 to 15, and
damping of the wing lowest structural mode and
airplanc longitudinal short-period mode from 0 to
95 percent of critical damping.

RESULTS AND DISCUSSION

The results of this paper are summarized in the
form of preliminary design charts. As mentioned
previously, these design charts were obtained from
plots such as those of figure 8 covering a complete
range of combinations of the variables.
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The charl given as figure 9 is a plot of the
ratios of maximum dynamic-response factors
(Yer)maz! (Ysp)mar against the ratio of the structural-
mode natural frequency divided by the semirigid
short-period natural frequency, the damping of the
structural mode being held constant at 2 pereent
of critical damping. The data of figure 9 were
reduced to a more compact form by converting
the abscissa to a ratio of the damped frequency of
the structural mode and the damped semirigid
short-period frequency. This simplification 1s
given as the design chart shown in figure 10.

The design chart shown in figure 10 indicates
that, if the damped structural frequeney and the
damped semirigid  short-period  frequency  are
cqual, the maximum dynamic-response factor of
the semirigid case will be about 1.6 times the value
of the maximum dynamic-response factor for the
semirigid short-period case. It can also be seen
that, when the ratio of the damped structural fre-
queney and the damped semirigid short-period
frequency is greater than about 6, there is no in-
crease in the maximum dynamic-response faclor
of the semirigid case over the value for the semi-
rigid short-period case.

Increasing the damping of the short-period mode
of the semirigid case while holding the damping of
the structural mode constant also results in a de-
crease in the maximum dynamic-response factor
of the semirigid case.  This effect can be seen from
the results shown in figure 9.

Tn order to investigate the effeet of structural
damping on the airplanc dynamic-response factor,
calculations were made for a semirigid short-
period mode with a natural frequency of 3.162
radians per second and a damping of 38 percent
of critical damping coupled to a structural mode
having variable damping of 0 to 95 percent of
critical damping and a damped frequency equal
{o the semirizid short-period damped frequency
(2.926 radians per second) and equal to 5 times the
semirigid short-period damped frequency. Dy-
namic-response-factor ratios for these cases are
plotted against critical damping of the structural
mode in figure 11, The result shown in figure 11
indicates that, for a given value of damping of the
short-period part of the semirigid case, an nercase
in the damping of the structural mode results in a
deerease in the maximum dynamie-response factor
of the semirigid ease.




EFFECT OF WING BENDING ON AIRPLANE DYNAMIC-RESPONSE FACTOR 11

i

o

]

el

|

[

oD pAqD>O OO
W
@

\

§

Ratio of maximum dynamic-response factors, (75’)max/<759)max
o
¥ /‘/ / //'(/r"
i i
| |

o o 2.0

?‘Is
== ||
%\\
o ~—————l | | ]
o RS Sa==—
\. — ] —
s L T o —
3.0 4.0 50

Frequency ratio, (w,,),/(wn)sp

Fravre 9. ~LEffect on the ratio of maximum dynamic-response factors of the proximity of the structural natural fre-

quency to the semirigid short-period natural frequency.

Thus, the data of figures 9, 10, and 11 indicate
that, for a given frequency of the short-period
mode of the semirigidl case, an increase in the fre-
quency and/or an infirease in damping of the strue-
tural mode and/or #in incregse in damping of the
semirigid short-period mode result in a decrease of
the maximum dynamic-response factor of the
semirigid case.  Figures 9, 10, and 11 would be
the ones used by a designer in order to obtain an
estimate of the increase in the ineremental nor-
mal-load short-period dynamic-response factor at
the airplane center of gravity due to the proximity
of the frequency of the lowest wing structural
mode to that of the airplane longitudinal short-
period mode.  Use of these figures presumes, as
mentioned earlier, that the designer would be able
to cstimate the maximum longitudinal short-
period response and would have an estimate of the

£,-0.02,

lowest wing structural frequeney and damping of
the lowest wing structural mode.

Another design figure which may be useful is
one which gives the effect of the proximity of the
structural natural frequeney to the short-period
natural frequency on the maximum semirigid
dynamic response when compared with the semi-
rigid short-period static value. This result was
casily obtained by plotting the semirigid maximum
dynamiec-response factor for cach case (obtained
from plots such as fig. 8 and noting that, as pointed
out earlier, the static value of the semirigid and
semirigid short-period eases are equal) against the
ratio of the structural natural frequency to the
semirigid short-period natural frequency.  Such
a plot is presented as figure 12,

The designer could use the chart given in figure
12 under the same restrictions as were mentioned
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for the previous charts with one exception. This
exception is that in using this chart the designer
would need to know only the airplane longitudinal

£,=0.02.

short-period steady-state response rather than the
maximum short-period response.

The effeet of the input-time base on the dy-
namic-response-factor ratio may also be of interest
and can be determined from plots such as that of
figure 8. In this case, rather than express the
maximum values of the dynamic-response factor
as ratios, the values of the dynamie-response fac-
tor of the semirigid and short-period frequencies
are expressed as ratios at specific values of the
period ratio T,/T,, and are plotted against the
period ratio. Typical plots of this dynamic-
response-factor ratio are shown in figure 13 for
three values of short-period damping.

The base of the input that gives the maximum
dynamic-response factor is, of course, different for
cach case, depending on the damping of the two
modes. It was usually greater than about 0.7
of the natural period of the short period for all the
cases studied in this paper. Examination of plots,
such as those shown in figure 13, indicate that,
when compared for the same triangle base, the
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on the semirigid maximum dynamie-response factor.,

highest ratio of dynamie-response factor for a fre-
queney ratio of 1.0 will be obtained from triangu-
lar inputs with a base equal to 0.6 to 0.8 of the
natural period of the short period.  For frequency
ratios greater than 1.0, the ratio of dynamie-
response factors is greatest for triangles  with a
base equal to less than 0.1 of the natural period of
the short period.  Thus, it is difficult to pinpoint
a specific triangle base as being the one giving the
most severe results. '

Sinee airplanes operate at flight conditions (alti-
tude, airspeed, center-of-gravity location) which
arc constantly changing, the frequency ratio for a

£=0.02.

particular configuration will not be constant.
Present-day large high-speed airplanes with thin,
high-aspect-ratio, flexible wings are operaling in
the frequency-ratio range of roughly 4 to 10.
The conditions for which the frequency ratio will
be a minimum depends somewhat on the configu-
ration but, in general, operations at low altitude,
high airspeed, and forward center-of-gravity posi-
tion should vesult in the lowest frequency ratio.
This effect can be seen in figure 14 where the effect
of dynamic pressure and airplane configuration
on the proximity of the damped frequeney of the
structural mode to that of the short-period mode
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Tiarre 13.—Typical plots of the effect of the period ratio
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frequency ratios,

is given. The data of this figure were converted
from the data of reference 3.

The data of figure 14 show that, for airplanes
with unswept winigs or wings with very little sweep,
the frequencies of the modes are brought into
closer proximity by an increase in the dynamic
pressure or, for a given dynamic pressure, by
moving the center of gravity forward. For
wings with sweep angles greater than about 30°,
these trends of the effects of dynamic pressure
and center-of-gravity position on the proximity
of the frequencies of the modes are the same.
For these cases, however, the acroclastic cffects
caused by increasing the dynamie pressure usually
cause the short-period mode to become statically
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unstable (indicated in fig. 14 by the frequency
ratio going to infinity) before the frequencies
of the modes can be brought together. Thus,
for a given configuration the operating conditions
will determine the relative proximity of the
frequencies of the two modes and at what point
on the absecissas of the design charts the airplanc
is operating.

Tt is well to emphasize that the preliminary
desigu charts given are only meant to give first-
order cffects and to apply only to systems which
are statically and dynamically stable.  Further-
more, since the curve given in figure 10 1s an
envelope of the maximum values of the converted
data of figure 9, it will normally give conservative
values of the ratio of maximum dynamic-response
factors. Finaliy, for a particular design problein
a detailed analysis including all the variables
should be made if the “rule-of-thumb’ value for
the ratio of maximum dynamic-response factors
given by the chart indicates the possibility of a
dangerous situation.
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CONCLUDING REMARKS

The results of this study of the effect of the
frequency of the first wing bending mode on the
airplane dynamic-response fuctor indicated that
the maximum center-of-gravity load-factor ro-
sponse to a triangular-shaped pulse elevator input
could be adequately determined by using a
simplified transfer function for the semirigid and
quasi-static cases. The use of the short-period
part of the semirigid transfer function as a basis
of comparison gave results which were either equal
to or on the conservative side of those that would

=

have been obtained from the quasi-steady transfer
function.

As a result of the reduction in the number of
terms obtained by using the simplified transfer
functions, it was possible to econstruct design
charts whieh provide trends and rule-of-thumb
estimates of the effect of the frequency of the
first wing-bending mode on the airplane dynamie-
response factor. The charts show thal the maxi-
mum dynamic-response factor for the semirigid
case will be 1.6 times that of the short-period case
when the damped frequencies of the structural
mode and short-period mode are equal.  Further-
more, when the frequency ratio is greater than
about 6, a lightly damped structural mode has
little or no effect on the dynamic-response-
factor ratio at the airplane center of gravity, and,
as the damping of the structural mode increases,
the frequeney ratio at which the struetural mode
has negligible effect also decreases.  Finally, the
charts indicate that the semirigid maximum
dynamic-response factor ean be as much as 2.4
times the steady-state value of the system,
depending on the damping of the structural and
short-period modes and on the ratio of the natural
frequencies of the two modes.

The dynamic-response factor for a particular
configuration will vary with the operating condi-
tions (principally with dynamic pressure) but
should be a maximum at flight conditions of low
altitude, high airspeed, and forward center-of-
gravily position,

It should be repeated that for a particular
design problem a detailed analysis should be
made if the rule-of-thumb value given by the
design charts indieates the possibility of a dan-
gerous situation,

LaANGLEY ResEarcH CENTER,

NATIONAL ABRONAUTICS AND SPACKH ADMINISTRATION,
LaxcLEY Fiewp, Va., February 21, 1958.



APPENDIX A

EQUATIONS OF MOTION

The equations of motion used in this paper w ill
be given here briefly for the convenience of the
reader. A complete development of these equa-
{ions is shown in references 3 aud 4. The equations
are derived on the basis of the Lagrangian equa-
tion:

OEN__of%

dt 0 aQ+aQ"“F (AT)

where

7, kinetic energy
I, potential energy
) generalized coordinate

F, generalized foree

The three generalized coordinates used are:
7  verlical translation
§  pitching velocity
k displacement of wing tip due to bending of

elastic wing

Tor an unswept wing the flexible-wing mode
shape consists of bending f.(y); and for a swept
wing the flexible-wing mode shape consists of
bending f.(y) combined with twisting per unit
bending deflection at the wing tip fy(y). The
spanwise bending is usually assumed to be para-
bolic and the spanwise twist, linecar.

The nondimensional equations of motion thus derived are:

2uD e —8) + 24 WP — iy a— na( N”)—I)H(;qu)—ll((’y”)—DH((’NUH):(‘NM A,
2uF 2D+ 2A 0PI — D ( 3y )= D8 o, Y= H (o)) = DIT(Clp, )= O 28
) Da Z DH as,

94, TP 2.4, D(a—8) 428,10 -+ 2.4 k*H — Cp a— 1)6

and by definition
An "
As g

(A2)

(A3)
) H(Cr,)~DH(Cy,,)— Cr,, 88

(1\4)

Simultaneous solution of equations (A2), (A3), (A4), and (AH) results in the semirigid transfer function

given as equation (3).
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APPENDIX B
DEFINITION OF TRANSFER-FUNCTION COEFFICIENTS

The transfer coefficients used for the analysis are defined in this appendix.

SEMIRIGID CASE

The coefficients for the semirigid case are
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QUASI-STEADY CASE

The cocfficients used in the analysis for the quasi-steady case are as follows:
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EFFECT OF WING BENDING ON AIRPLANE DYNAMIC-RESPONSE FACTOR 19

RIGID CASE

The transfer functions used in the analysis for the rigid case are as follows:
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APPENDIX C

CONYERSION FACTORS FOR DIMENSIONALIZING THE NONDIMENSIONAL TRANSFER-FUNCTION
COEFFICIENTS

The conversion factors for dimensionalizing the
nondimensional t(ransfer funections for the semi-
rigid case are as follows:
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The conversion factors for dimensionalizing the
nondimensional transfer functions for the quasi-
steady case are as follows:
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The conversion factors for dimensionalizing the
nondimensional transfer functions for the rigid

case are as follows:
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